$int_2^{12,41}$

COM: int_2_begin

- COM: int_2_summary
- COM: int_2_intro
- STM: int_trichot
- STM: le_transitivity
- STM: lt_transitivity_1
- STM: lt_transitivity_2
- STM: eq_to_le
- STM: lt_to_le
- STM: le_to_lt_weaken
- STM: lt_to_le_rw
- STM: le_to_lt
- STM: le_to_lt_rw
- STM: add_ident
- STM: add_com
- STM: add_functionality_wrt_le
- STM: add_functionality_wrt_lt
- STM: add_functionality_wrt_eq
- STM: add_cancel_in_eq
- STM: add_cancel_in_lt
- STM: add_cancel_in_le
- STM: add_mono_wrt_eq
- STM: add_mono_wrt_eq_rw
- STM: add_mono_wrt_lt
- STM: add_mono_wrt_lt_rw

STM: add_mono_wrt_le

STM: add_mono_wrt_le_rw

STM: minus_functionality_wrt_le

STM: minus_mono_wrt_le

STM: minus_functionality_wrt_eq

STM: minus_mono_wrt_eq

STM: minus_functionality_wrt_lt

STM: minus_mono_wrt_lt

STM: sub_functionality_wrt_le

STM: minus_minus_cancel

STM: mul_ident

STM: mul_com

STM: zero_ann

STM: zero_ann_a

STM: zero_ann_b

STM: minus_thru_mul

STM: mul_preserves_eq

STM: mul_preserves_lt

STM: mul_preserves_le

STM: mul_cancel_in_eq

STM: mul_cancel_in_lt

STM: mul_cancel_in_le

COM: mul_fun_comment

STM: multiply_functionality_wrt_le

STM: mul_functionality_wrt_eq

STM: int_entire

STM: int_entire_a

STM: mul_bounds_1a STM: mul_bounds_1b STM: pos_mul_arg_bounds STM: neg_mul_arg_bounds $COM: add_nat_wf_com$ STM: add_nat_wf STM: multiply_nat_wf COM: quasi_lin_com ABS: |i| absval STM: absval_wf STM: comb_for_absval_wf STM: $absval_pos$ STM: absval_neg ABS: $i = \pm j \text{ pm}_{-}$ equal STM: pm_equal_wf STM: absval_zero STM: absval_ubound STM: absval_lbound STM: $absval_eq$ STM: absval_sym STM: absval_elim ABS: imax(a;b) **imax** STM: imax_wf STM: comb_for_imax_wf ABS: imin(a;b) imin STM: imin_wf

STM: comb_for_imin_wf

STM: $minus_imax$

STM: minus_imin

STM: imax_lb

STM: imax_ub

STM: $imax_add_r$

STM: imax_assoc

STM: imax_com

STM: $imin_assoc$

STM: imin_com

STM: imin_add_r

STM: imin_lb

STM: imin_ub

ABS: a - - b ndiff

STM: $ndiff_wf$

STM: comb_for_ndiff_wf

STM: ndiff_id_r

STM: ndiff_ann_l

STM: ndiff_inv

STM: ndiff_ndiff

STM: ndiff_ndiff_eq_imin

STM: ndiff_add_eq_imax

STM: $ndiff_zero$

 ${\rm COM:\ div_rem_com}$

STM: div_rem_sum

STM: rem_to_div

COM: quadrants_com

STM: rem_bounds_1

STM: rem_bounds_2

- STM: rem_bounds_3
- STM: rem_bounds_4
- STM: div_2_to_1
- STM: div_3_to_1
- STM: div_4_to_1
- STM: $rem_2_to_1$
- STM: rem_3_to_1
- STM: $rem_4_to_1$
- STM: rem_sym
- STM: rem_antisym
- STM: remainder_wf
- STM: comb_for_remainder_wf
- STM: rem_bounds_z
- STM: rem_sym_1
- STM: rem_sym_1a
- STM: rem_sym_2
- STM: rem_mag_bound
- STM: div_bounds_1
- STM: divide_wf
- STM: divide_wfa
- ABS: Div(a;n;q) **div_nrel**
- STM: div_nrel_wf
- STM: div_fun_sat_div_nrel
- STM: div_elim
- STM: div_unique
- STM: div_lbound_1

ABS: $\operatorname{Rem}(a;n;r)$ rem_nrel STM: rem_nrel_wf STM: rem_fun_sat_rem_nrel STM: div_base_case STM: div_rec_case STM: rem_base_case STM: rem_gen_base_case STM: rem_rec_case STM: rem_invariant STM: rem_addition STM: rem_rem_to_rem STM: rem_base_case_z STM: rem_eq_args STM: rem_eq_args_z ABS: $a \mod n$ modulus STM: modulus_wf ABS: $a \div \downarrow n \operatorname{\mathbf{div}_\mathbf{floor}}$ STM: div_floor_wf STM: mod_bounds STM: div_floor_mod_sum STM: int_mag_well_founded STM: int_upper_well_founded STM: int_upper_ind STM: int_lower_well_founded STM: int_lower_ind STM: int_seg_well_founded_up STM: int_seg_ind

 $STM: int_seg_well_founded_down$

STM: decidable__ex_int_seg

STM: decidable__all_int_seg

COM: int_2_end

http://www.nuprl.org/FDLcontent/p0_942988_/p15_5268_{int_2}.html